Influenza Updates

The newsletter of the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne

WHOCCFluMelb

Volume 14, Issue 1, May 2025

Preparation for the upcoming influenza season

Winter and the influenza season is fast approaching over the next few months across many Southern Hemisphere countries. This means that any sample you are able to send to us will be vital in our continued surveillance efforts.

With this in mind, please note the following points:

- Please send us your samples (ideally February 2025 onwards). We accept both viral isolates and/or original clinical respiratory specimen. The WHO Shipping Fund Project (SFP) is available to assist National Influenza Centres in covering the cost of shipping samples to WHO Collaborating Centres. For most countries, the WHO SFP can only support one shipment in 2025 and it is therefore recommended that countries ship in July to mid-August. If you have any questions about shipping samples or would like information about Fund, accessing WHO Shipping contact the please us at Enquiries@influenzacentre.org
- We need to receive samples by the end of August at the very latest (and preferably earlier) in order to process them in time for the Influenza Vaccine Consultation.

Recommendations for Northern Hemisphere 2025-2026 vaccine announced

The WHO Consultation on the Composition of Influenza Vaccines for the Northern Hemisphere 2025-2026 was announced in London, United Kingdom on 28 February 2025. The WHO made the following recommendations:

It is recommended that **trivalent** vaccines for use in the 2025-2026 influenza season (Northern Hemisphere winter) contain the following recommendations:

Egg-based vaccines

- an A/Victoria/4897/2022 (H1N1)pdm09-like virus;
- an A/Croatia/10136RV/2023 (H3N2)-like virus; and
- a B/Austria/1359417/2021 (B/Victoria lineage)-like virus

Cell- or recombinant-based vaccines

- an A/Wisconsin/67/2022 (H1N1)pdm09-like virus;
- an A/District of Columbia/27/2023 (H3N2)-like virus; and
- a B/Austria/1359417/2021 (B/Victoria lineage)-like virus.

For quadrivalent egg- or cell culture-based or recombinant vaccines for use in the 2025-2026 Northem Hemisphere influenza season:

Egg-, cell- or recombinant -based Vaccines

a B/Phuket/3073/2013 (B/Yamagata lineage)-like virus.

Contribution of National Influenza Centres to the vaccine

We thank everyone who has sent us influenza samples prior to the WHO influenza vaccine Consultation in February 2025. Your viruses provided essential data on recently circulating strains and helped to inform the choice of recommended vaccine strains.

In this context, we would like to acknowledge the contribution and critical role played by WHO National Influenza Centres and other submitting laboratories in providing influenza samples and associated data to WHO Collaborating Centres, not only for the purposes of analysis and surveillance, but also for the provision of potential vaccine candidates. Please continue to send us your samples. The need for constant surveillance remains as influenza viruses continue to circulate and evolve.

za surveillance in SEAR countries, and spent the week working with Centre staff to gain a deeper understanding of the work performed at the Melbourne WHO CC.

Trainings and visitors at the Centre

The Centre hosted **Regis Grailhe** and **Quentin Olivier** from **Institut Pasteur Korea** between 17-21 February 2025. They worked with lan Barr and Harry Stannard from the Centre on a collaborative project to establish an improved tool for live imaging of mice and ferrets.

The Centre hosted Natchaya Khiadsang and Wandee Meechalad from the National Influenza Centre (NIC), at the National Institute of Health, Thailand between 10-14 March 2025. They were trained by Saira Hussain, Ashwin Muraleetharan and Clyde Dapat from the Centre in genotypic and phenotypic assays relevant to antiviral testing in influenza viruses.

The Centre hosted **Hytham Saber**, the Technical Officer – National Influenza Networks from the **WHO South East Asian Office (SEARO)** between 8-15 February 2025. Hyatham gave a fantastic talk about his new role at SEARO as well as influen-

The Centre hosted **Narcisse Joseph** from the **University Putra Malaya, Malaysia** between 7- 18 April 2025. She was trained by Yi-Mo Deng and Clyde Depart from the Centre in molecular techniques, including NGS, RT- PCR and bioinformatics for influenza and other viruses.

Featured Publication

Influenza and Other Respiratory Viruses

ORIGINAL ARTICLE OPEN ACCESS

An Improved Rapid and Sensitive Long Amplicon Method for Nanopore-Based RSV Whole-Genome Sequencing

Xiaomin Dong^{1,2} 💿 | Steven Edwards¹ | YI-Mo Deng^{1,2,3} | Clyde Dapat¹ | Arada Hirankitti¹ | Rachel Wordsworth¹ | Paul Whitney^{1,2} | Rob Baird⁴ | Kevin Freeman⁴ | Andrew J. Daley⁵ | Ian G. Barr^{1,3} 💿

¹WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia i ²Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Infection and Immunity, Melbourne, Victoria, Australia i ³School of Biomedical Sciences, The University of Welstern Australia, Petro, Western Australia, 1⁻⁴Royal Darwin Hospital, Tuwi, Northern Territory, Australia i ³Department of Microbiology, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia

Correspondence: Ian G. Barr (Ian.barr@influenzacentre.org) Received: 6 January 2025 | Revised: 1 April 2025 | Accepted: 13 April 2025

Funding: This work was supported by Denartment of Health and Aged Care. Australian Government.

Xiaomin, Steven, Yi-Mo, Clyde, Arada, Rachel, Paul and **Ian** from the Centre published an article tilted "An Improved Rapid and Sensitive Long Amplicon Method for Nanopore-Based RSV Whole-Genome Sequencing". This article describes the development of a long amplicon-based WGS protocol using a onestep multiplex RT-PCR assay and rapid barcoding. Using 135 RSV-positive clinical samples from Australia they showed that this method achieved a 85.9% success rate for WGS, with improved turnaround times and excellent results for samples with cycle threshold (Ct) values below 30. They concluded that this new method is effective for performing RSV WGS using the ONT platform, offering a simpler and faster alternative to existing methods.

WILEY

Dong X, Edwards S, Deng YM, Dapat C, Hirankitti A, Wordsworth R, Whitney P, Baird R, Freeman K, Daley AJ, Barr IG. An Improved Rapid and Sensitive Long Amplicon Method for Nanopore-Based RSV Whole-Genome Sequencing. Influenza Other Respir Viruses. 2025 May;19(5):e70106. doi: 10.1111/ irv.70106. PMID: 40296507; PMCID: PMC12037990.

Recent Webinars

SEARO hosted a webinar titled "Strengthening Collaboration between WHO Collaborating Centers (WHO CCs) and National Influenza Centers (NICs) in the Southeast Asia Region" on 25 March 2025. **Patrick Reading** from the Centre gave a talk titled "What we do at the WHO Collaborating Centre for Reference and Research on Influenza (WHO CCRRI), Melbourne". The meeting was also attended by several staff from the Centre.

SEARO hosted an Information Sharing Meeting for sear NICs on 29 April 2025. This meeting discussed "Best practices in specimen management: Strengthening specimen management for influenza surveillance". **Katie Milne** and **Heidi Peck** from the Centre gave a talk on "Influenza sample referral to the WHO Collaborating Centre for Reference and Research on Influenza (WHO CCRRI), Melbourne". The meeting was also attended by several staff from the Centre.

Upcoming conferences

Registration link: NSV 2025

Registration link: <u>APVIC 2025</u>

XIXth Negative-strand RNA Virus Meeting June 22-27, 2025 Montpellier, France

Registration link: <u>11th International Symposium on Avian Influenza</u>

Registration link: <u>IMRP</u>

Recent activities at the Centre (1 January — 30 April 2025)

Below is a summary of surveillance activities at the Centre during this current reporting period. We anticipate that the next few months will be an increasingly busy time for the Centre, as the Southern Hemisphere influenza season commences.

Samples received: The Centre received 3734 influenza samples from the laboratories and institutions listed below during the period 1 January-30 April 2025.

AUSTRALIA: Canberra Hospital, Westmead Hospital, NEW CALEDONIA: Centre Hospitalier De Nouvelle The Children's Hospital at Westmead, Royal Darwin Caledonie Hospital, Princess Alexandra Hospital, Queensland Health Forensic and Scientific Services, Queensland Children's PHILIPPINES: Research Institute for Tropical Medicine Hospital, SA Pathology, Hobart Pathology, Royal Hobart Hospital, Australian Clinical Labs, Austin Pathology, Monash Medical centre, Alfred Hospital, Royal Children's Hospital, Royal Melbourne Hospital, VIDRL, Dorevitch Pathology, Pathwest QEII Medical Centre

BRUNEI: National Virology Reference Laboratory

CAMBODIA: Institut Pasteur du Cambodge

COOK ISLANDS: Te Marae Ora Ministry of Heath

INDIA: National Institute of Virology

KIRIBATI: Ministry of Health and Medical Services

NEPAL: National Public Health Laboratory

SAMOA: Tupua Tamases Meaole Hospital

SINGAPORE: National Public Health Laboratory

SOLOMON ISLANDS: National Referral Hospital

SRI LANKA: Medical Research Institute

TAHITI: Institut Louis Malarde

THAILAND: National Institute of Health

TIMOR-LESTE: Laboratorio Nacional Da Saude

Isolation of viruses in eggs:

The Centre undertakes primary isolation of selected viruses in eggs to obtain potential vaccine strains. From 1 January to 30 April 2025, 7 A(H3N2) and 2 viruses A(H1N1) were successfully isolated in eggs at the Centre.

Recent activities at the Centre (1 January — 30 April 2025) continued

Antigenic analysis 1560 viruses analysed by haemagglutination inhibition (HI) assay

Antiviral drug susceptibility 894 viruses analysed by neuraminidase inhibition (NAI) assay Sequencing 862 viruses analysed 861 HA genes 862 NA genes 745 MP genes 148 NS genes

	No. of viruses analysed by HI assay			No. of viruses tested by NAI assay			No. of viruses sequenced by NGS (ONT or Illumina)				
Country of submitting laboratory	A(H1N1)pdm09	A(H3N2)	BNictoria	A(H1N1)pdm09	A(H3N2)	BNictoria	A(H1N1)pdm09	A(H3N2)	BNictoria	B lineage undetermined	A unsubtyped
Australia	733	237	164	395	103	36	382	126	89	10	2
Brunei	0	2	0	24	4	0	5	3	0	0	
Cambodia	15	26	19	15	26	18	9	17	19	0	
Cook Islands	3	0	0	3	0	0	3	0	0	0	
India	9	14	7	9	14	7	4	13	7	0	
Nepal	2	6	4	0	5	4	3	6	4	0	
New Caledonia	56	40	0	56	40	0	25	20	0	0	
Philippines	1	0	2	1	0	2	6	1	15	0	
Samoa	2	0	0	2	0	0	3	0	0	0	
Singapore	38	20	20	38	20	20	0	4	0	0	
Sri Lanka	9	12	4	9	11	4	14	17	6	1	
Tahiti	4	2	3	4	2	2	4	2	3	0	2
Thailand	6	7	7	6	7	7	6	6	7	0	
Timor-Leste	16	66	4				9	6	3	0	
Total	894	432	234	562	232	100	473	221	153	11	4

*Subtypes and lineages are based on analysis of HA and in some cases confirmed by genetic analysis of NA.

Surveillance update: Virus activity 1 January—30 April 2025

The data below are results for viruses collected or sampled between 1 January and 30 April 2025 that have been analysed at the Centre as of 5 May 2025.

[†] Subtypes and lineages are based on analysis of the HA and in some cases confirmed by genetic analysis of NA.

^The South Pacific region comprises countries in Polynesia, Melanesia, and Micronesia.

^Australasia comprises of Australia and New Zealand.

Antigenic analysis*

A total of 1560 viruses were tested using the haemagglutination inhibition (HI) assay.

Viruses were identified as low-reactors if their titre against reference antiserum was at least 8-fold lower than the titre of the reference virus. All A(H3N2) and B/Victoria viruses were antigenically similar to their respective reference strains. A proportion (18.6%) of A(H1N1) viruses were low reactors to the reference strain A/Victoria/4897/2022.

[†] Subtypes and lineages are based on analysis of the HA and in some cases confirmed by genetic analysis of NA.

Surveillance update (continued): Virus activity 1 January—30 April 2025

Antiviral drug susceptibility testing:

492 viruses tested by neuraminidase inhibition (NAI) assay

Testing for susceptibility to the antiviral drugs oseltamivir (Tamiflu), zanamivir (Relenza), peramivir, and laninamivir showed that one virus had highly reduced inhibition by one or more of these neuraminidase inhibitors (NAI).

	Oseltamivir			Peramivir			Laninamivir			Zanamivir		
Type/subtype/ lineage	Normal inhibition	Reduced inhibition	Highly reduced Inhibition	Normal inhibition	Reduced inhibition	Highly reduced Inhibition	Normal inhibition	Reduced inhibition	Highly reduced Inhibition	Normal inhibition	Reduced inhibition	Highly reduced Inhibition
A(H1N1) pdm09	362	0	1	361	1	1	363	0	0	362	1	0
A(H3N2)	98	0	0	98	0	0	98	0	0	98	0	0
B/Victoria	31	0	0	31	0	0	31	0	0	31	0	0
Total	491	0	1	490	1	1	492	0	0	491	1	0

Viruses with reduced inhibition by antiviral drugs in the NAI assay undergo genetic analysis of the neuraminidase gene to detect mutations associated with the functional change. The relationship between reduced inhibition and the clinical effectiveness of a neuraminidase inhibitor is not well understood. Further studies would be required to determine whether a virus with reduced inhibition in the NAI assay is clinically resistant.

Viruses with highly reduced inhibition to one or more NAI

Type/subtype/lineage		Country of	Mutation detected	NAI(s) with highly reduced inhibition (marked with *)						
		submitting laboratory		Oseltamivir	Peramivir	Laninamivir	Zanamivir			
A(H1N1)pdm09 A/\	/ictoria/56/2025	Australia	H275Y	*	*					

